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CHAPTER 1

INTRODUCTION

In building systems, like heating, cooling systems are all related to temperature con-

trol. The temperature should be kept within a desired range to maintain system work.

Inefficient temperature control may causes temperature abnormal and make people in

the building feel uncomfortable.

There are several methods to balance the temperature. For example, MPC (Model

predictive control. The main idea of MPC is to use the model of the buildings to predict

the future evolutions of the system,but the scalability for large systems might be limited

because of its high computational requirement for optimization [7].

Recently, green scheduling control approach was proposed which included lazy con-

troller. The lazy controller can achieve temperature control well to keep all the tem-

peratures within desired ranges. Consider a heating system of multiple zones and zones

are heated by heaters. Assume this heating system is applied in several rooms. Each

zone represents a room and it is heated by a heater. The room temperature must be

between the lower and upper threshold; that is,the room temperature is safe. Green

scheduling control introduced a simple scheduling controller called lazy controller. In

lazy scheduling,the heater only has two operation modes : ON and OFF [6]. Obviously

mode ON means the heater is turned on. However, in the mode OFF, that means when

it consumes no energy and provides no heat input a heater is turned off. The heater will

be switched between ON and OFF modes once the temperature reaches the upper or

lower thresholds. If the temperature within the thresholds, heater will keep it’s current

mode. Besides ensuring all the tasks are safe, a schedule policy must satisfy a resource

constraint that at most k heaters can be in mode ON simultaneously at any time [8].
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1.1 Thesis and Contribution

However,it seems that we do not need to switch the heater ON or OFF only when

the temperature hits the upper or lower threshold because the constraint is kept task

within the upper and lower thresholds. Therefore, we would like to using CBS (constant

bandwidth server) in the heating system to see whether this approach is more efficient

than Green scheduling control [9] [1]. CBS is one of the most used algorithms for

implementing resource reservation on a real-time system. Each task can be assigned a

server (one task per server).The server is characterized by period and computation time,

which is the budget. Besides, each server has deadline which initial value is 0 and will

be updated when the budget exhausted. The ratio budget/period yields bandwidth,

which is the fraction of CPU to be reserved by the scheduler for each subsequent period.

The CBS is scheduled in such a way that it will never demand more than its reserved

bandwidth,which means the heater does not need to turn off only when it hits to the upper

threshold. Every time the heater turn on for budget unit,once the budget exhausted then

it will be replenished and postpone the server deadline.

In my thesis, I will analyze and compare green scheduling controller and CBS schedul-

ing system in some aspects. By implementing small-scale experiment, I can analyze the

efficiency of green scheduling controller and CBS controller under different circumstances.

1.2 Organizations

The rest of the paper is structured in the following manner: Chapter 2 will introduce

two models include the Worst Case Execution Time (WCET). We also state and prove

two theorems related to the budget’s condition. Chapter 3 will formally introduce the

constant bandwidth server, giving some key notations and task schedules in our case.

Besides, it will give the schedubillity analysis regaring the CBS rules. Chapter 4 will

evaluate the green scheduling method and CBS method concurrently and make compar-

isons between these two approaches. Chapter 5 will state the conclusions and some future
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works.

1.3 Related Work

This section surveys previous work in structured text processing. Energy efficiency

plays an important role in real-time system, usually there are two widely-used technique

are Dynamic Voltage Scaling and Dynamic Power Management [4]. The first one is used

to reduce CPU power consumption by reducing CPU voltage and frequency, while second

one is used to reduce power consumption by transitioning a device from the active state

to sleep state. Both Green scheduling controller and CBS controller are related to DPM

by transitioning from one mode to another mode.

Recently the popular approaches to energy efficient control for commercial build-

ings are Green scheduling and MPC(model predictive control). I will introduce Green

scheduling controller later.

In general terms, the MPC is a flexible and well-developed advanced control technique.

The idea of MPC is to design a predictive model and use this model to predict the future

evolution of the system. For example, weather prediction, occupancy prediction from

MPC could help to control the building climate [10]. The main purpose of MPC is

to minimize building’s energy consumption, but the scalability of this method for large

systems might be limited duty to its high computational requirements. Green scheduling

control may be better than MPC in this aspect.

Generally speaking, there are several ways to achieve reduction of energy consumption

except green scheduling control and model predictive control. My thesis will put empha-

sis on green scheduling control and CBS system. Analyzing the existing green scheduling

control system, apply and improve CBS algorithm to the same model with green schedul-

ing to see whether the CBS algorithm can be efficiently used for temperature control or

not.
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CHAPTER 2

TASK MODELS

Consider a heating system with multiple zones, and each zone represents a room.

Let us denote that there are i zones, where 1 ≤ i ≤ n, and heat input rate is Qi ≥

0(KW ). The room temperature in Zone i which denoted by x(◦C) is comfortable when

it stays between the lower threshold li and an upper threshold hi. Ta is the ambient air

temperature(◦C). The conservation law of energy gives us the following equation for zone

i:

Ci
dxi
dt

= Ki(Ta − xi) +Qi (2.1)

where Ci(KJ/K) is the thermal capacity of the zone and Ki(KW/K) is the thermal

conductance [8].

2.1 Worst Case Execution Time Model

In this section, we define a Worst Case Execution Time model. The worst case

execution time of a task is the maximum length of time the task could take to execute.

In this model, the reason why it is called worst case execution is that heater’s execution

time of every period is same. The model has a state which means room temperature in

this paper. li and hi represent the lower and upper bounds. Assume applying the budget

Bi to the model(we will explain this budget Bi later), turn on the heater for continuous

Bi time, then turn off until to Ts. A model M is a tuple(x(ti), li, hi, Bi,m, Ti), in which:

• x(ti) is room temperature;

• li and hi, where li < hi, are the lower and upper thresholds of the xi;

• Bi is the budget;

• m is a set of operation mode;
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• Ti is the period.

According to Truong’s Green scheduling system [8], the task model has two operation

modes which are ON and OFF, that is m=ON or OFF. ON means turn on the heater,

OFF stands for turn off the heater and meantime heat input rate Qi = 0. In the heating

system, when the mode is ON, then the state (room temperature) will increase. However,

when the mode is OFF, the state will decrease. The system growth temperature is given

by

x(t) =
b+

a+
+ (x(t1)−

b+

a+
)e−a+(t−t1) (2.2)

and the decay of x’s equation is

x(t) =
b−

a−
+ (x(t1)−

b−

a−
)e−a−(t−t1) (2.3)

x(t1) is the initial temperature.where a+,b+,a−,and b− are parameters. The constraint of

threshold is as follows:

b−

a−
<l<h<

b+

a+
(2.4)

Constant bandwidth server(CBS) is a scheduling algorithm based on reserving a frac-

tion of the processor bandwidth to serve a periodic jobs. A CBS server is defined by

(Bi,Ti), where Ti is the period of the server and Bi is the maximum budget in each

period. According to the update rules, the budget and deadline will be updated for ev-

ery job arrival. In this model, we just assume the budget Bi is represent time demand.

Here we introduce a worst case. In every period, the time of mode ON is q which is

WCET(Worst Case Execution Time), and time of OFF mode is Ti −Bi. [9] [2]

Lemma 1. Given one room and one server which denoted by period Ti and budget Bi,

it includes two heating intervals and two cooling intervals. If moving the later heating
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Figure 2.1: Room temperature model

interval forward, then the new peak temperature will higher than the either of previous

peak temperature.

Proof. Assume B1 and B2 are separate time for the heating intervals and x(t1) is the

initial state, see Figure 2.1. In Figure 2.1, the horizontal ordinate represents time and

vertical ordinate means room temperature. x(t1) is initial temperature,x(t2) and x(t4)

are highest peak temperature, however x(t3) is lowest peak temperature. Turn on the

heater at very beginning, So according to the equation 2.2 and 2.3, let k = b+

a+
and

c = b−

a−
we can see that first peak state x(t2) = k+(x(t1)− k)e−a+B1 . the second peak state

x(t4) = k+(c−k)e−a+B2+(k−c)e−a−t−a+B2+(x(t1)−k)e−a+(B1+B2)−a−t. After i moving the

later heating interval forward, the new peak state will be x = k + (x(t1)− k)e−a+(B1+B2)

we can see from the equations since the x(t1) − k < 0, and e−a+(B1+B2) < 1, besides,

e−a+(B1+B2) < e−a+B1 , thus x higher than x(t2). As for x(t4), same way,x − x(t4) =
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Figure 2.2: WCET model: Room in mode ON at beginning, every period heating time
is B, then cooling that is in mode OFF for T −B time unit.

(x(t1)− k)(e−a+(B1+B2) − e−a+(B1+B2)−a−t) + (k − c)(e−a+B2 − e−a−t−a+B2) > 0, therefore,

x > x(t4).

Theorem 1. Under lemma 1, assume the heater of room in mode ON at beginning, the

minimum budget Bi should satisfy the following condition :

(k − c)e−a−(Ti −Bi)× (1− e−a+Bi)

1− e−a−(Ti−Bi)e−a+Bi

≥ l − c (2.5)

Proof. Assume x(t1) is the initial state, so according to 2.2:

x(t2) = k + (x(t1)− k)e(−a+B) (2.6)
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Then x(t3) equals

x(t3) = c+ (x(t2)− c)e−a−(T−B) (2.7)

we can infer that

x(t3) = c+ (k + (x(t1)− k)e−a+B − c)e−a−(T−B) (2.8)

x(t4) = k + (x(t3)− k)e(−a+B) (2.9)

plug in x(t3) in x(t4), then x(t4) = k+(k−c)e−a−(T−B)ea
+B +(x(t1)−k)e−a+Be−a−(T−B)+

(c− k)e−a+B

Overall, we can conclude that: every peak temperature x(t2n−1) = k+ (c−k)e−a+B×
1−An−1

1−A
+ (k− c)e−a+Be−a−(Ti−B)× 1−An−1

1−A
+ (x(t1)− k)e−(n−1)a−(Ti−B)e−na+B. where A =

e−a−(Ti−B)e−a+B when n approaching to infinity, the upper thresholds of state x is h.

According to Lemma 1 therefore xt2n−1 need to less and equal to h, thus we can get the

minimum value of the budget B.

Therefore the budget q should satisfy the following condition: (k−c)e−a− (Ti−Bi)×(1−e−a+Bi )

1−e−a−(Ti−Bi)e−a+Bi
≥

l − c

Theorem 2. Under Lemma 1, assume the heater of room in mode OFF at beginning,

then budget Bi should satisfy the following condition that:

(c− k)e−a+B(1− e−a−(Ti −Bi))

1− e−a+Bie−a−(Ti−Bi)
≤ h− k (2.10)

Let room cooling for Ti − B time at beginning then turn on the heater for B, the

scenario will be different, see in figure 2.2. Assume x(t1) is the initial state, then according

to 2.3:

x(t2) = c+ (x(t1)− c)e−a−)(Ti −B) (2.11)



www.manaraa.com

9

Figure 2.3: WCET Model:Room in mode OFF at beginning, every period cooling time
is Bi, then heating time is Ti −B time unit

According to 2.2, x(t3) equals

x(t3) = k + (x(t2)− k)e−a+B (2.12)

So we can infer that x(t2n−1) = c+(k−c)e−a−(Ti−B)× 1−An−1

1−A
+(c−k)e−a+Be−a−(Ts−q)×

1−An−1

1−A
+ x(t1)− k)e−(n)a−(Ti−B)e−(n−1)a+B

where A = e−a−(Ts−B)e−a+B The lower threshold of x(t2n)is l, after n approaching to the

∞, the x(t2n) should greater the lower threshold. Therefore the budget B should satisfy

the following condition: (c−k)e−a+B(1−e−a− (Ti−Bi))

1−e−a+Bie−a−(Ti−Bi)
≤ h− k

Above states the two WCET models. In WCET model, during every period, there is

no schedule, the heating time and cooling time is totally same. If the model is WCET
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model, then the budget must satisfied conditions in equation 2.5 and 2.10 in case of

temperatures doesn’t within the desired boundaries.
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CHAPTER 3

HEATER SCHEDULE

The role of schedule is provide a better way to control the temperature in order to

make temperature more stable. Instead of turning heater ON and OFF at boundary all

the time, i am trying to find one way to control the temperature automatically regardless

of caring about upper and lower threshold. Here, we apply the Constant Bandwidth

Server(CBS) in the schedule, introducing the server into our schedule [5] [3].

The CBS is a budget aware extension of EDF scheduler. This algorithm used to assign

a dynamic scheduling deadline di to the task.The main goal of CBS is to ensure temporal

isolation of tasks meaning that a task’s execution in terms of meeting deadlines must not

be influenced by other tasks as if they were run on multiple independent processors. Here

the temporal isolation denoted the worst case finishing time for a task does not depend

on the other tasks running in the system. when job arrives, put the job in queue, then

CBS become active. After current job finish, next pending job is in queue.

Just considering about the situation of heating system, for example, the temperature

in rooms is the state variable. Assume there are two rooms, the temperature in the rooms

should be within upper and lower bound which is a safe task. The room temperature

must always within the upper and lower interval; otherwise it is unsafe. The server is

used to monitor the the system workload on every processor.

Comparing CBS schedule method with Green scheduling method, we can see which

one is better for temperature control. [8]

3.1 Key Notations

Table 3.1 summarizes the key notations used in the rest of paper.

3.2 Basic Rules

The CBS is equipped with a set of rules which are as follows:
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Table 3.1: key notations

x state variable
Bi the maximum budget of the server
Ci the current budget
di the server deadline
l lower threshold
h upper threshold
si constant bandwidth servers
Ti server period
Ui server bandwidth

1. Assign the initial di and ci to 0 once the task created.

2. When the job arrival, that means we need to turn on the heater, assign the


di = ri + Ti

Ci = Bi

3. Based on the EDF scheduling(Earliest Deadline First), server si with the earlier

deadline has priority to execute first.

4. If (ri + ci
Ui
<di), then we update the deadline and recycle the current budget and

deadline since there exist remaining budget when the state already reach to the

upper threshold. 
di = di + Ci + Ti

Ci = Ci

(3.1)

5. if budget exhausted, then postpone the deadline and replenish the budget.


di = di + Ti

Ci = Bi

(3.2)
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Above is the basic CBS, in our case, we can see that the maximum budget means

the maximum execution time for heater in state ON. Each room is associated with a

dynamic deadline di, According the deadline, we used EDF scheduling algorithm, assign

the higher priority to room which with the earliest deadline. If there are at most k

heaters can in mode ON, that means we have k server can be used. At beginning release

time, choose k rooms with earliest deadline to turn on the heater and room with lower

threshold initial temperature must turn on the heater first. If the some room’s budget

exhausted, turn off the heater and then update the deadline according to the equation

3.2, next compare with other deadline of idle rooms and still choose the earliest deadline

to execute. But if before ran out of the budget the temperature hits the upper threshold,

then the deadline should be updated according equation 3.1, the next steps are the same

with budget exhausted situation.

3.3 Schedulability Analysis

In the CBS, WCET Bi denoted budget and Ti denoted bandwidth server period,

the ratio Ui = Bi/Ti is denoted as the server bandwidth which is fraction of CPU time

reserved to task. In our case, that is the maximum execution time for the heater cannot

exceed Bi, the deadline of the server need to be updated for every period Ti. CBS assign

a dynamic scheduling deadline di to each task, and both di and current budget Ci are

initialized to 0 when the task is created.

In our case, the EDF(Earliest Deadline First) is used(based on the scheduling dead-

lines assigned by the CBS). That is assign the dynamic deadline to the task first, then

make the schedule according to the EDF. Then,

Lemma 2. The CBS just act as a pure EDF if the served hard task τ with parameters(Cs, Ts)

and Ci ≤ Bs and Ti = Ts. where Ts is the task’s period and Cs is task’s execution time [1].

Proof. According to the definition of CBS, each hard task is assigned deadline di=ri+Ti,

and maximum budget Bs less thanCi, each task finishes before the budget is exhausted,
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so the deadline does not change and is totally same as the one used by EDF.
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CHAPTER 4

SIMULATION RESULTS

I implement the lazy scheduling controller that in Truong’s paper in MATLAB, and

compare the proposed approach CBS in two examples of small scales. I consider 3 rooms

and 4 rooms whose parameters were around mean thermal capacity C = 5000KJ/K and

mean thermal conductance K = 0.35KW/K.

4.1 Lazy scheduling controller

The principle of lazy controller is very simple. when the state hits to its lower thresh-

old, then it must be switched ON immediately. The reason why it is called lazy is that

switching decisions are made only when the task’s state reaches either its lower or upper

threshold. As long as state in the interior of boundaries, the task stays in their current

mode. If tasks at their upper threshold then the heater should be turned OFF and it

should be turned ON when tasks at their lower threshold. The schedulibility condition

of lazy scheduling controller is if and only if d > k and at most k tasks start at their

lower threshold, where k is numbers of heaters can be in mode ON simultaneously at

any time, and d is the sum of di, di = ai
−li−bi

−

ai−li−bi
−−ai+li−bi

+ [8]. The value of d in my two

implementations are all around 1.9 and less than 2 which is heaters quantity that can be

in mode ON simultanesouly , so they are all satisfied feasibility condition.

4.1.1 Three rooms simulation of lazy controller

Assume these three tasks as three rooms. In the lazy scheduling controller, these 3

rooms were heated by three identical heaters with 3 heat input rates, Q = 6, 9, 12(KW ).

Parameters a+, a− for room 1 are 0.000067,0.000067, room2 are 0.000068 and 0.000068,

room3 are 0.00007 and 0.000069. Room temperature must be kept between 20◦C and

22◦C. According to the feasibility analysis of tasks [8], there are at most two tasks can

be ON simultaneously and start at their lower thresholds. So Let Room1 and Room2
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Figure 4.1: Room temperatures for Lazy scheduling controller

start at 20◦C, Room3 start at 21◦C. The simulation time was 10 hours. In Figure 4.1 are

simulated room temperatures that always stay within the desired range, And Figure 4.2

shows the number of heaters simultaneously that at mode ON. We can see from Figure

4.2 that during most time there is 1 heater or 2 heaters be turned ON, only within few

time that no heater working is allowable.

4.1.2 Four rooms simulation of lazy controller

Now we can add one more room to see whether the lazy controller can support four

room temperatures. The heat input rateQ for the fourth room is 12KW, a+, a− are

0.00007 and 0.00005. The initial temperature for this room is 21◦C. Still, there are

at most two heaters can be turned On simultaneously and d’s value is satisfied with

feasibility condition. Temperature result is in Figure 4.3, we can see from Figure 4.3 that

temperature at any time is within the upper and lower threshold, therefore the controller

is working for this 4 rooms situation. Figure 4.4 shows the number of heaters in mode

ON simultaneously, it’s always two heaters all the time.
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Figure 4.2: Number of heaters at ON mode for Lazy scheduling controller

Figure 4.3: Four room temperatures for Lazy controller
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Figure 4.4: Number of heaters at ON simultaneously for Lazy controller

4.2 Constant Bandwidth Server

4.2.1 Three rooms simulation of CBS

In the simulation of CBS, i still consider 3 rooms which are exactly same with the

rooms in simulation of Lazy scheduling controller. The steps are as follows: choosing

first two rooms with earliest deadlines and turn on the heater of these two rooms, then

just execute for budget time. Then if the budget exhausted or hits the upper threshold

before ran out of the budget, update the deadline of current room and turn off the heater.

Every time whenever exists idle server, compare the remaining inactive rooms and choose

rooms with earliest deadline to turn on the heater. All the parameters are same, heat

input rate Q = 3, 6, 9,(KW ). Room temperature must be kept between 20◦C and 22◦C.

The budget of these three rooms are 250, 288, 316(second), and period T are 300, 348,

407(second). In Figure 4.2 are simulated room temperatures, all the temperatures except

room3 are within the desired range, and all the temperatures are around 22◦C. This is

because we only have three rooms but two heaters at ON mode all the time, the growth
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Figure 4.5: Room temperatures for CBS scheduling

of temperature is too fast. Number of heaters at mode ON simultaneously are showed in

figure 4.3. So i change the parameters a+ and a− which affect the growth and decrease

velocity of room temperature. The new a+ and a− of these three rooms are 0.000060,

0.000067; 0.000063, 0.000065 and 0.000060. 0.000069. The simulation result is in Figure

4.7. we can clearly see that all the temperatures are within desired ranges.

4.2.2 Four rooms simulation of CBS

Same with implementation of lazy controller, after implementing three rooms, now

i add one more room, keep at most two heaters in mode ON. The parameters like a+,

a−,b+ and b− are same with the forth room of lazy controller. The initial temperature

x(t1) of this room is 21◦C, the budget and period are 384,502(second) and input heat rate

Q is 12KW . Temperature result is in Figure 4.7. According to Figure 4.7, it is clearly

shows that temperatures of room3 and room4 falling down to the lower threshold 20◦C

which doesn’t satisfy the condition that all the temperatures must within boundaries.

We can see that the growth velocity is too slow and decay velocity is too fast, one more

room cannot support this situation. Then i change the parameters of these four rooms
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Figure 4.6: No.of heaters at mode ON simultaneously

Figure 4.7: Room temperatures for CBS scheduling after changing parameters
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Figure 4.8: Room temperature for four rooms

a+ and a−, increase the value of a+ a little bit to accelerate growth. New a+ of these

four rooms are 0.000075, 0.000080, 0.000095, and 0.000080. The simulation time is still

10 hours, now i get the new result of room temperatures in Figure 4.8. It is clear from

Figure 4.8 that after changing the parameters all temperatures are within upper and

lower threshold, The heaters quantity at any time for both three rooms and four rooms

situation is 2 in CBS since there are at most two heaters can be in mode ON(this i

explained in Chapter 3), see in Figure 4.9.

According to Figure 4.3 and Figure 4.8, we can see that using CBS to control tem-

perature, the temperatures all more stable. Unlike lazy controller, temperature hits the

upper and lower threshold all the time since the algorithm is keeping heater ON until

it hits to the upper boundary or turning heater OFF and make temperature decreasing

until it hits to the lower threshold, therefore, the changes of temperature is kind of severe.

But as for constant bandwidth server, because the budget is fixed, so the room does not

need to be heated to the higher threshold or decreasing until hits to the lower threshold.
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Figure 4.9: Room temperature for four rooms after changing parameters

Figure 4.10: Room temperature for four rooms
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Under the appropriate parameters, CBS can achieve temperature control successfully and

the temperatures are more stable.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this paper, we make comparisons between existing lazy controller and constant

bandwidth server for temperature control of specific task models, making assumptions

related to worst case execution time task models, implementing both lazy controller and

constant bandwidth server of small scales. The proposed method is applying constant

bandwidth server to task model which Truong proposed in green scheduling system.

Turing’s paper proposed lazy controller, the reason why it is called ”lazy” is that

this controller doesn’t make any schedule, just letting temperature keep temperature in-

creasing or decreasing until it hits upper or lower threshold then turn on or or turn off

the heater. By applying constant bandwidth server is different since CBS can provide

a schedule to achieve temperature control. Constant bandwidth server is a real-time

algorithm, it guarantees fraction of processor time(which is bandwidth, in this paper is

budget) assigned to the sever. Our simulation results shows CBS works fine for tempera-

ture control and the temperatures under constant bandwidth server scheduling are more

stable than lazy controller.

5.2 Future Work

In future work, we will provide simulation results for large scale since this paper

only provide small scale’s simulation results and analysis. We would like to see constant

bandwidth server scheduling can be feasible for large scale even for building systems,

whether the CBS could make temperature more stable for large scale or not. We also

intend to explore exact feasibility test for constant bandwidth server temperature control,

like what’s the relationship among rooms number, initial temperature, budget, period

and parameters that can apply for all kinds of building systems.

Furthermore, We can investigate more dynamic systems since in this paper the model
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is fixed to see whether lazy controller or constant bandwidth server scheduling has more

flexibility to incorporate complicated systems.
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Temperature control plays an important role in building control systems; there are

numerous methods for controlling temperature. Recently, a popular controller is the

lazy controller which proposed by Truong et al. However, by applying lazy control, the

temperature is not stable since this controller simply lets temperature increase or decrease

until it reaches the upper or lower temperature thresholds. We seek a heater-control

schedule that can make room temperatures more stable. The Constant Bandwidth Server

(CBS) was developed to handle soft real-time tasks characterized by the execution time

and period. By employing the concepts of CBS, we can derive a CBS budget and deadline

for each room; for every budget release time, the temperature can increase/decrease

for only a bounded time with the goal of stabilizing each room’s temperature. The

performance of proposed CBS method is compared with lazy controller through several

simulation experiments.
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